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Motivation



Galois-type theory in the operator algebra setting

A REMINDER ABOUT GALOIS THEORY:

Let E be a field and G be a finite subgroup of Aut(E). Then, EG ⊂ E is a finite
and Galois (normal and separable) extension such that [E : EG ] = |G| (degree of the
extension, dimEG E).

Galois’ Theorem

Let F ⊂ E be a field extension. If the extension is finite and Galois, there is a
finite group G := Gal(E/F ) such that F = EG , |G| = [E : F ]. Moreover, we
have a one-to-one correspondence (Galois correspondence) between subgroups
of G and intermediate fields of F ⊂ E :

(i) For any subgroup H < G, F ⊂ EH ⊂ E (intermediate field of F ⊂ E).

(ii) For any intermediate field K of F ⊂ E (i.e. F ⊂ K ⊂ E), H =
Aut(E/K) < G such that K = EH .
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ABOUT VON NEUMANN ALGEBRAS AND C*-ALGEBRAS:

Let H be a Hilbert space and B ⊂ B(H) be a ∗-algebra of operators on H.

(1) if B is unital and weak operator closed, B is called a von Neumann algebra.

(2) if B is norm operator closed, B is called a C*-algebra.

Remarks:

Any von Neumann algebra is a C*-algebra.

If B is finite dimensional C*-algebra, then B is also a von Neumann algebra.

Given S ⊂ B(H), we set S′ := {T ∈ B(H) : T ◦ s = s ◦ T for all s ∈ S}.
(Bicommutant theorem) B is a von neumann algebra iff B′′ = B.

Examples:

(i) Let X be a compact space, then L∞(X) is a von Neumann algebra and C(X) is
a C*-algebra.

(ii) Let (ni )k
i=1 be a finite family of natural numbers, then B =

⊕k
i=1 Matni (C) is a

finite dimensional C*-algebra. Moreover, any finite dimensional C*-algebra is of
this form.
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II1 SUBFACTORS:

Let M be a von Neuman algebra. We say that M is of type II1 if M is not a finite
dimensional algebra and there is a unique (normalize) faithful trace τ : M → C
(τ(1) = 1, τ(a∗a) = 0 ⇒ a = 0, τ(ab) = τ(ba)).
If M is of type II1 , then we can see M ⊂ B(L2

τ (M)) where L2
τ (M) is the Hilbert

space constructed using the scalar product ⟨a|b⟩ := τ(b∗a).
A II1 von Neumman algebra M is called a factor if M′ ∩ M = C1. Here, we
calculate the commutator using the inclution M ⊂ B(L2

τ (M)).

Examples:

Let G be a discrete countable group with the infinite conjugacy class property (a
ICC group). Consider the left regular representation λ : G → B(l2(G)) given by
λ(g)δh = δgh for every g , h ∈ G. Here, we use the notation δg : h 7→ δg,h. Then

L(G) := λ(G)′′ ⊂ B(l2(G)) (the von Neumann group algebra)

is a II1 factor. The unique faithful trace τ : L(G) → C is given by

τ(λ(g)) = ⟨λ(g)δe |δe⟩ = δg,e

for all g ∈ G.
Remark: A group G has the ICC property if for every g ∈ G − {e}, its conjugacy
class is infinite. Example: S∞ and F2.
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For any n ∈ N∗, we embed the matrix algebra Mn(C) into M2n(C) by send a

matrix x to the matrix
(

x 0
0 x

)
. Considering M2(C) ⊂ M4(C) ⊂ · · · M2n (C) ⊂

M2n+1 (C) ⊂ · · · then

R :=

{⋃
n∈N

M2n (C)

} τ

where τ |M2n (C) = Trn

is a II1 factor. This is called the hyperfinite II1 factor.

JONES’ INDEX AND JONES’ BASIC CONSTRUCTION:

We say that N ⊂ M is a II1 subfactor inclusion if N and M are II1 factors and
τM |N = τN . If N′ ∩ M = C1, we say that the inclusion is irreducible.

Given a II1 subfactors inclusion N ⊂ M. The Hilbert space L2
τ (M) is a left N-module

and then we can calculate its Murray-von Neumann dimension

[M : N] := dimN(L2
τ (M)) (Jones’ index)

Remark: In general, dimC(N′ ∩ M) ≤ [M : N].
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Theorem (Jones ’83)

For any inclusion of II1 factors N ⊂ M

[M : N] ∈ J :=
{

4 cos2
(
π

n

)
: n ≥ 3

}
∪ [4,∞]

Moreover, given θ ∈ J, then there exists a subfactor Rθ ⊂ R such that
[R : Rθ] = θ.

Given a II1 subfactor inclusion N ⊂ M, there exists a II1 factor M2 such that N ⊂ M ⊂
M2, and [M2 : M] = [M : N]. Explicitely, M2 =< M, e1 >= JN′J ⊂ B(HτM ), where
J : x 7→ x∗ is the conjugation operator coming from the theory of Tomita-Takesaki
associate to trace τM .

Remarks:

N ⊂ M ⊂ M2 is called the Jones’ basic construction associated to N ⊂ M.
We can itirate the basic construction to obtain a tower of II1 factors:

N ⊂ M ⊂ M2 ⊂ M3 ⊂ · · · (Jones’ tower associated to N ⊂ M).

We will say that the inclusion N ⊂ M is of depth 2, if
M ∩ N′ ⊂ M2 ∩ N′ ⊂ M3 ∩ N′ (derived tower)

is the basic construction associated to M ∩ N′ ⊂ M2 ∩ N′. 5/28



Examples:

(i) Let H ⊂ G be two ICC groups. We have the inclusion of II1 factors

L(H) ⊂ L(G)

and [L(G) : L(H)] = [G : H].

(ii) Let α : G → Aut(M) an outer weak continuous action of a finite group G on
a II1 factor M, i.e. for each e ̸= g ∈ G, we have α(g) /∈ {ad(u) = u • u∗ :
u is a unitary on M}. Equivalently, (MG )′ ∩ M = C1. Then, MG and M ⋊ G are
II1 factors and

[M ⋊ G : M] = [M : MG ] = |G|.

(iii) Let ▷ : H ⊗ M → M be a weak continuous action of a finite dimensional Hopf
C∗-algebra on M. If the action is outer, i.e. (MH)′ ∩M = C1, then MH and M⋊H
are II1 factors and

[M ⋊ H : M] = [M : MH ] = [H : C]
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Let G be a finite group acting outerly on a II1 factor M (for example on the hyperfinite
II1 factor R). Then, the inclusion MG ⊂ M yields an irreducible depth 2 II1 subfactor
inclusion of finite index |G|. Moreover, the Jones’ basic construction of associated to
MG ⊂ M is given by the following inclusion of II1 factors MG ⊂ M ⊂ M ⋊ G.

Question: Given an irreducible depth 2 II1 subfactor inclusion N ⊂ M of finite index,
Is there a group G such that MG = N and the Jone’s basic construction associated to
N ⊂ M is MG ⊂ M ⊂ M ⋊ G ?

Answer: It was announced by Adrian Ocneanu (’85) that irreducible depth 2 II1 subfactor
inclusions of finite index can be characterized in terms of finite-dimensional Kac algebras
(finite quantum groups). This conjecture was achieved with the following theorem:

Ocneanu’s theorem (Szymanśki ’94, Longo ’94, David ’96)

Let N ⊂ M be an irreducible depth 2 II1 subfactor inclusion of finite index.
Consider its associated Jones’ tower (Mi )i∈N where M0 = N and M1 = M.
Then, there are two finite-dimensional Kac algebra structures on M′ ∩ M3 and
N′ ∩ M2, dual each other, denoted by K and K̂ respectively, an outer action of
K on M and an outer action of K̂ on N such that

N = MK, M2 ∼= M ⋊ K, and M ∼= N ⋊ K̂.
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Quantum groups and inclusion of von Neumann algebras

It seems natural to try to find out if Ocneanu’s theorem can be generalize to a more
general case, for example if:

N ⊂ M is an irreducible depth 2 subfactor inclusion with no restriction on the
value of the index;

N ⊂ M is a depth 2 II1 subfactor inclusion of finite index.

Similar results follow in the cases above. And, in order to explain one of the main
motivations for the study of operator algebraic quantum groupoids, we give in the
following lines a description of these two generalizations of Ocneanu’s theorem.
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Locally compact quantum groups: Herman & Ocneanu (’98) gave the first steps of
a possible generalization for the case of an irreducible depth 2 subfactor inclusion of
index not necessarily finite. In their work, they characterize the inclusion of semi-finite
factors using crossed product by twisted actions of discrete groups, and they conjecture
a result in the case of discrete Kac algebras. The conjecture was finally proved using
for it the general framework of operator algebraic quantum groups (mainly the theory
of multiplicative unitaries in the sense of Baaj-Skandalis):

Theorem (Enock-Nest ’96 + Enock ’98)

Let N ⊂ M be an irreducible depth 2 subfactor inclusion, equipped with a
normal semi-finite faithful operator-valued weight T from M to N satisfying
some regular condition. Consider its associated Jones’ tower (Mi )i∈N where
M0 = N and M1 = M. Then, there are two locally compact quantum group
structures on M′ ∩ M3 and N′ ∩ M2, dual to each other, denoted by G and Ĝ
respectively; an outer action of G on M and an outer action of Ĝ on N such
that

N = MG, M2 ∼= M ⋊ G, and M ∼= N ⋊ Ĝ.

Remark: Any locally compact quantum group arises in that way (Vaes ’05).
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As corollary, it was shown that:

If the inclusion N ⊂ M is compact, the quantum group G is a compact Kac
algebra.

If the inclusion N ⊂ M is discrete, the quantum group G is a discrete Kac algebra.

If the inclusion N ⊂ M is compact and discrete (equivalently N ⊂ M is of finite
index), the quantum group G is a finite-dimensional Kac algebra.
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Quantum groupoids and inclusion of von Neumann algebras

FINITE QUANTUM GROUPOIDS:

It was suggested by Nill, Szlachányi & Wiesbrock (’98) the possibility to characterize
finite index depth 2 II1 subfactor inclusions in terms of finite-dimensional weak Hopf
C*-algebras. Weak Hopf C*- algebras and Weak Kac algebras was introduced previously
as a generalization of Kac algebras and groupoids algebras.

Similar to Kac algebras, given a finite-dimensional weak Kac algebra K acting outerly
on a II1 factor M (for example on the hyperfinite II1 factor R), we obtain a depth 2
II1 subfactor inclusion MK ⊂ M with finite index such that its basic construction is
given by

MK ⊂ M ⊂ M ⋊ K.

In this case, K acting outerly on M means that (MK)′ ∩ M = C(K)s , where C(K)s

denotes the source counit subalgebra of K, then the inclusion above MK ⊂ M is not
necessarily irreducible since the source counit subalgebra C(K)s for a weak Kac algebra
K is not necessarily a trivial C*-subalgebra. In fact, C(K)s = C if and only if K is a Kac
algebra.
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The Ocneanu’s theorem has been extended to the framework of finite quantum grou-
poids (weak Hopf C*-algebras and weak Kac algebras). Moreover, a Galois correspon-
dence was shown for finite depth II1 subfactor inclusions of finite index. This corres-
pondence makes it possible to share information between finite quantum groupoids and
II1 subfactor inclusions of finite index, for example concerning the categorical data as-
sociated with these objects.

Theorem (Nikshych & Vainerman ’00 + Nikshych-Vainerman ’00)

Let N ⊂ M be a depth 2 II1 subfactor inclusion of finite index. Consider its
associated Jones’ tower (Mi )i∈N where M0 = N and M1 = M. Then, there
are two finite-dimensional weak Hopf C*-algebra structures on M′ ∩ M3 and
N′ ∩ M2, dual each other, denoted by G and Ĝ respectively, an outer action of
G on M and an outer action of Ĝ on N such that

N = MG, M2 ∼= M ⋊ G, M ∼= N ⋊ Ĝ,

and [M : N] = dim(G) := ∥ΛC(G)
C(G)s

∥2. Moreover, we have the equivalences of
categories

NBimN(N ⊂ M) ∼= Rep(G) and MBimM(M ⊂ M2) ∼= Rep(Ĝ).

Remark: It can be shown that any finite-dimensional weak Kac algebra arises in that
way (Nikshych ’98). 12/28



MEASURED QUANTUM GROUPOIDS:

A more general question arises from the two generalizations above: Is it possible to give
a similar result in the general case of inclusions of von Neumann algebras? Yes.

Theorem (Enock & Vallin ’00 + Enock ’00 + Enock ’05)

Let N ⊂ M be an inclusion of σ-finite von Neumann algebras of depth 2,
equipped with a regular normal semi-finite faithful operator-valued weight T
from M to N. Suppose there exists on N′ ∩ M an adapted faithful semi-finite
weight µ and consider the associated Jones’ tower (Mi )i∈N where M0 = N and
M1 = M. Then, there are a measured quantum groupoid structure on M′ ∩M3,
denoted by G = G(N ⊂ M), and an outer action of G on M such that

N ∼= MG, M2 ∼= M ⋊ G.

Moreover, there are a measured quantum groupoid structure on N′ ∩ M2,
denoted by Ĝ, which is the Pontrjagin dual of G, and an outer action of Ĝ

on N such that M ∼= N ⋊ Ĝ. Using these measured quantum groupoids, the
Jones’ tower (Mi )i∈N is given by

MG ⊂ M ⊂ M ⋊ G ⊂ (M ⋊ G) ⋊ Ĝ ⊂ · · ·

Remark: Any measured quantum groupoid arises in that way (Enock ’11).
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Measured quantum transformation groupoids

Given an action α of a measured quantum groupoid G on a von Neumann algebra
N, then α(N) ⊂ N ⋊α G is a depth 2 inclusion of von Neumann algebras satisfying
the conditions of the theorem above, then there is a new measured quantum groupoid
G(α) := Ĝ(α(N) ⊂ N ⋊α G) such that G(α) act on α(N) and α(N)⋊G(α) ∼= N ⋊α G.

In case α is an action of a locally compact quantum group G, by a result of Enock &
Timmmermann (’16), there exist a braided commutative Yetter–Drinfeld structure on
Ñ = α(N)′ ∩ (N ⋊α G) denoted by (Ñ, θ, θ̂) such that G(α) ∼= G(Ñ, θ, θ̂) is a measured
quantum transformation groupoid.

Open questions: Using the connection between inclusions of von Neumann algebras of
depth 2 and measured quantum groupoids:

Similar to the case of compact/discrete Kac algebras. What kind of inclusions can
be found related to compact/discrete quantum transformation groupoids?
Similar to the case of finite quantum groupoids. Is it possible to give a connection
between some categorical data associated to inclusions of von Neumann algebras
and compact quantum transformation groupoids?
Is there a Galois correspondence for actions of compact quantum transformation
groupoids on von Neumann algebras that generalizes the known results for com-
pact groups and finite quantum groupoids?
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Transformation Quantum
Groupoids



Reminder about transformation groupoids

Let G be a group acting on a set S. The set G ⋉ S := G × S endowed with the
applications

· : (G ⋉ S)(2) ⊆ (G ⋉ S)2 → G ⋉ S −1 : G ⋉ S → G ⋉ S
((g , s), (h, t)) 7→ (gh, t) (g , s) 7→ (g−1, g · s)

gives a groupoid which is called the transformation groupoid associated with the action
of G on S. Here

(G ⋉ S)(2) :=
{

((g , s), (h, t)) ∈ (G ⋉ S)2 : s = h · t
}

⊆ (G ⋉ S) × (G ⋉ S).

Considering

d : G ⋉ S → G ⋉ S r : G ⋉ S → G ⋉ S
(g , s) 7→ (g , s)−1(g , s) = (e, s) (g , s) 7→ (g , s)(g , s)−1 = (e, g · s)

we have

(G ⋉ S)(2) =
{

((g , s), (h, t)) ∈ (G ⋉ S)2 : d(g , s) = r(h, t)
}

= (G ⋉ S)d ×r (G ⋉ S)

(G ⋉ S)(0) := d(G ⋉ S) = r(G ⋉ S) = {e} × S (unit space)

Remark: If (G ⋉ S)(0) = {•}, then the groupoid G ⋉ S is the group G .
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Two quantum constructions in the litterature:

Lu’s Hopf algebroids (’98): Quantum version of a finite transformation groupoid.
Main ingredient: braided commutative Yetter-Drinfeld algebra over a Hopf algebra (Rad-
ford ’90, Yetter ’90, Majid ’91).
Advantage: Explicit contruction (Hopf algebroid structure).
Problem: What is its quantum “dual” ? Because there are some problems with the
“dual” of an infinite dimensional Hopf algebra.

Enock-Timmermann’s measured quantum transformation groupoids (’15): Quantum
version of a measured transformation groupoid.
Main ingredient: braided commutative Yetter-Drinfeld von Neumann algebra over a
locally compat quantum group (Nest & Voigt ’10).
Advantage: Closed by a Pontrjagin-like duality.
Problem: Is there a equivalente C∗-version? A direct translation of the construction is
not possible due to the Tomita-Takesaki theory.
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Intuitive idea of a quantum transformation groupoid

transformation groupoid quantum tranformation groupoid
group: G quantum group: G

set: S algebra: B

action: G ↷ S two actions:
G

α
↷ B

Ĝ
α̂
↷ B

+ bc Yetter-Drinfeld condition

G ⋉ S Ĝ ⋉
α̂

B (total algebra)
S B (base algebra)

d : G ⋉ S → S α̂ : B ↪→ Ĝ ⋉
α̂

B
r : G ⋉ S → S βα : Bop ↪→ Ĝ ⋉

α̂
B

· : (G ⋉ S)(2) → G ⋉ S ∆ : Ĝ ⋉ B → (Ĝ ⋉ B)
α̂

× βα (Ĝ ⋉ B)
+ +

conditions conditions

Measure: ν : S → C base integral: µ : B → C
Haar system: {λs}s∈S partial integral: E : Ĝ ⋉

α̂
B → B
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Definitions and conventions:

G is called an algebraic quantum group, in the sense of Van Daele, if G =
(O(G),∆, φ), where (O(G),∆) is a multiplier Hopf ∗-algebra and φ : O(G) → C
is a left invariant integral (positive faithful functional such that (id ⊗ φ)∆(a) =
φ(a)1 for all a ∈ O(G)). Using φ, we can construct the dual algebraic quantum
group Ĝ and the algebraic multiplicative unitary U (this object encodes the cano-
nical pairing).

A triplet (N, θ, θ̂) is called a Yetter-Drinfeld G-∗-algebra, if N is a ∗-algebra,
θ : N → M(O(G) ⊗ N) is an action of G and θ̂ : N → M(Ô(G) ⊗ N) is an action
of G such that

(idÔ(G) ⊗ θ) ◦ θ̂ = (Σ ⊗ idN) ◦ (Ad(U) ⊗ idN) ◦ (idO(G) ⊗ θ̂) ◦ θ. (YD)

If moreover for each m, n ∈ N, we have

θc(mop)θ̂◦(nop) = θ̂◦(nop)θc(mop) (BC)

inside M(H(G) ⊗ Nop), we say that (N, θ, θ̂) is braided commutative Yetter-
Drinfeld G-∗-algebra. Here θc := (op ⊗ op) ◦ θ ◦ op and θ̂◦ := (S

Ĝ
⊗ op) ◦ θ ◦ op.

Remark: That is equivalente to say that (N,◁
θ̂
, θ), where ◁

θ̂
: B ⊗ O(G) → B is

the dual action of θ̂, is a braided commutative Yetter–Drinfeld ∗-algebra over the
multiplier Hopf ∗-algebra (O(G),∆) (T. ’22)
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Measured Yetter-Drinfeld algebras

For simplicity, from now on we will suppose that G is of compact type, i.e. (O(G),∆)
is a unital Hopf ∗-algebra, and N will be a unital ∗-algebra.

A Yetter–Drinfeld G-∗-algebra (N, α, θ̂) is called measured, if there is a Yetter–Drinfeld
integral µ, i.e. a non-zero positive faithful functional µ : N → C such that

(id ⊗ µ)α = µ(−)1 (θ-invariant), and (id ⊗ µ)α̂ = µ(−)1 (θ̂-invariant).

Theorem (Canonical automorphisms of a Yetter–Drinfeld ∗-algebra. T. ’23)

Let (N, θ, θ̂) be a unital braided commutative Yetter–Drinfeld Gc-∗-algebra.
The linear maps

γθ : N → N
m 7→ m[0] ◁θ̂

S−1
G (m[−1])

and
γ̂θ : N → N

m 7→ m[0] ◁θ̂
S2
G(m[−1])

are “canonical” automorphisms satisfying γ−1
θ

= γ̂θ, γθ ◦ ∗ ◦ γθ ◦ ∗ = id,

θ̂ ◦ γθ = (S2
Ĝ◦

⊗ γθ) ◦ θ̂ and θ̂ ◦ γ̂θ = (S−2
Ĝ◦

⊗ γ̂θ) ◦ θ̂.
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Let (N, θ, θ̂) be a unital braided commutative Yetter–Drinfeld Gc-∗-algebra. Using the
canonical automorphism γ̂θ on N, consider the γ̂θ-opposite ∗-algebra Nop

γ̂θ
, i.e. the

vector space N with non-degenerate ∗-algebra structure given by mopnop := (nm)op

and (mop)∗ := γ̂θ(m∗)op for all m, n ∈ N. By the last theorem, we have

θ ◦ γ̂θ = (S−2
Gc ⊗ γ̂θ) ◦ θ and θ̂ ◦ γ̂θ = (S−2

Ĝ◦
⊗ γ̂θ) ◦ θ̂,

thus we can contruct conjugate actions

θc : Nop
γ̂θ

→ O(G) ⊗ Nop
γ̂θ
, mop 7→ (op ⊗ op)θ(m)

and
θ̂c : Nop

γ̂θ
→ M(Ô(G)

op
⊗ Nop

γ̂θ
), mop 7→ (op ⊗ op)θ̂(m).

Theorem (Dual Yetter-Drinfeld ∗-algebras. T. ’22 + T. ’23)

The following statements are equivalent:

(i) (N, θ, θ̂) is a unital braided commutative Yetter–Drinfeld Gc-∗-algebra
with Yetter–Drinfeld integral µ.

(ii) (Nop
γ̂θ
, θ̂c, θc) is a unital braided commutative Yetter–Drinfeld Ĝc,◦-∗-

algebra with Yetter–Drinfeld integral µ◦ := µ ◦ op.
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Algebraic quantum transformation groupoids (AQTGd)

Let G = (O(G),∆G, φG) be an algebraic quantum group of compact type and (N, θ, θ̂, µ)
be a unital braided commutative measured Yetter–Drinfeld Gc-∗-algebra with canonical
automorphisms denoted by γθ and γ̂θ. Consider the unital ∗-algebra A = O(G) #

θ̂
N ∼=

Ĝ◦ ⋉
θ̂

N, the injective linear maps

α : N → A
m 7→ 1O(G) # m

,
β : N → A

m 7→ m[−1] # m[0]

and the following linear maps

tB : B := α(A) → C := β(A)
α(m) 7→ β(m)

,
tC : C → B

β(m) 7→ α(γθ(m))
,

∆B : A → A B×B A
h # m 7→ (h(1) # 1N) B×B (h(2) # m)

,

∆C : A → A C ×C A
h # m 7→ (h(1) # 1N) C ×C (h(2) # m)

,

S : A → A
h # m 7→ β(γ̂θ(m))(SG(h) # 1N)

,
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εB : A → B
α(m)(h # 1N) 7→ α(m ◁

θ̂
h) ,

Cε : A → C
(h # 1N)β(m) 7→ β(m ◁

θ̂
SG(h)) ,

µB : B → C
α(m) 7→ µ(m)

,
µC : C → C

β(m) 7→ µ(m)
,

BψB : A → B
α(m)(h # 1N) 7→ φG(h)α(m)

, CϕC : A → C
(h # 1N)β(m) 7→ φG(h)β(m)

.

Then, we have:

Theorem (AQTGd of Compact Type, T. ’18 + T. ’23)

The collection

A(N, θ, θ̂, µ) := (A,B,C , tB , tC ,∆B ,∆C , µB , µC , BψB , CϕC )

yields a unital measured Hopf ∗-algebroid, called the algebraic quantum trans-
formation groupoid of compact type associated with the braided commutative
Yetter–Drinfeld Gc-∗-algebra (N, θ, θ̂) and the Yetter–Drinfeld integral µ.

Consider now the unital braided commutative measured Yetter–Drinfeld Ĝc,◦-∗-algebra
(Nop

γ̂θ
, θ̂c, θc, µ◦). Then:
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Theorem (AQTGd of Discrete Type, T. ’18 + T. ’23)

There is a measured multiplier Hopf ∗-algebroid A(Nop
γ̂θ
, θ̂c, θc, µ◦) with total

algebra given by the non-degenerate ∗-algebra Ô(G) #θc Nop
γ̂θ

∼= G ⋉θc Nop
γ̂θ

.
Moreover

(1) The linear map

T Â → Ô(G) #θc Nop
γ̂θ

(α(m)(h # 1N)) · ϕ 7→ (h · φG) # γ̂θ(m)op

yields an isomorphism between the measured multiplier Hopf ∗-algebroids

Â(N, θ, θ̂, µ) and A(Nop
γ̂θ
, θ̂c, θc, µ◦)

satisfying T ◦ Ŝ = S′ ◦ T .

(2) The bilinear map

P
θ̂,θc : O(G) #

θ̂
N × Ô(G) #θc Nop

γ̂θ
→ C

(h # m) × (ω # nop) 7→ p(h, ω)µ(nm)

yields a pairing in the sense of Timmermann, Van Daele & Wang (’22)
between the measured multiplier Hopf ∗-algebroids

A(N, θ, θ̂, µ) and A(Nop
γ̂θ
, θ̂c, θc, µ◦).
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Examples:

Classic transformation groupoids: Let G be a finite group acting by the left on a finite
space X and ν : X → R+

0 be a non-zero G-invariant function. Consider the unital braided
commutative measured Yetter–Drinfeld Gc-∗-algebra (K(X), θ, θ̂ = trv, µν) arising from
the action of G on X . The measured multiplier Hopf ∗-algebroid A(K(X), θ, θ̂, µν) is
given by

A = K(G) ⊗
θ̂

K(X) ∼= K(G ⋉ X)

p ⊗ f 7→
∑

g∈G,x∈X

p(g)f (x)δ(g,x) ,

α
θ̂

: K(X) → M(K(G) ⊗
θ̂

K(X))

f 7→
∑

g∈G,x∈X

f (d(g , x))δ(g,x) ,

βθ : K(X) → M(K(G) ⊗
θ̂

K(X))

f 7→
∑

g∈G,x∈X

f (r(g , x))δ(g,x) ,

B := {α
θ̂
(f ) = d•(f ) : f ∈ K(X)} ∼= K((G⋉X)(0)) ∼= {βθ(f ) = r•(f ) : f ∈ K(X)} =: C ,
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Given p ⊗ f ∈ K(G ⋉ X),

A B×B A = A C ×C A = K((G ⋉ X)(2)), and

∆B(p ⊗ f )((g , x), (g ′, x ′)) = (p ⊗ f )((g , x)(g ′, x ′))

for all ((g , x), (g ′, x ′)) ∈ (G ⋉ X)(2).

S(p ⊗ f )(g , x) = (p ⊗ f )((g , x)−1) for all (g , x) ∈ G ⋉ X .

The Pontrjagin dual of the measured multiplier Hopf ∗-algebroid A(K(X), θ, θ̂, µν) is
the measured multiplier Hopf ∗-algebroid A(K(X), θ̂c, θ, µν) with total algebra given
by

A′ = C[G] #θc K(X) ∼= C[G ⋉ X ]
λg # f 7→

∑
x∈X

f (x)λ(g,x) .

Moreover

αθc : K(X) → C[G] #θc K(X)
f 7→

∑
x∈X

f (x)λ(e,x) ,

β
θ̂c : K(X) → C[G] #θc K(X)

f 7→
∑
x∈X

f (x)λ(e,x) .
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Algebraic quantum groups of compact/discrete type: Consider the trivial braided com-
mutative measured Yetter-Drinfeld Gc-∗-algebra (C, θ = trv, θ̂ = trv, idC). In this case,
we have γθ = id and

A(N, θ, θ̂, µ) ∼= G and A(Nop
γ̂θ
, θ̂c, θc, µ◦) = Ĝ◦.

Heisemberg algebras as algebraic quantum groupoids of discrete type: Let G be an
algebraic quantum group of compact type. Then the total algebra of the Pontrjagin
dual of the measured Hopf ∗-algebroid

A(O(G), (S−1
G ⊗ id) ◦ Σ ◦ ∆G,AdΣ(U∗), εG),

is given by the opposite Heinseberg algebra

A′ ∼= (O(G) #▶ Ô(G))op
S2
G#Ŝ−2

G

.

Here the canonical automorphisms are given by S−2
G and S2

G.
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C*-algebraic quantum transformation groupoids

Let (N, θ, θ̂, µ) be a braided commutative measured Yetter-Drinfeld Gc-∗-algebra. Then:

Theorem (C*-LCQGds arising from algebraic QTGds, T. ’18 + T. ’23)

There is a Hopf C∗-bimodule over the base C∗
r (N) with invariant C∗-valued

weights denoted by Gr (N, θ, θ̂, µ). This object is the C∗-counterpart of the
measured quantum transformation groupoid GvN(N, θ, θ̂, µ). Moreover, using
a C∗-pseudo-multiplicative unitary arising from (N, θ, θ̂, µ), we have a duality
of Hopf C∗-bimodules over a base between the C∗-algebraic quantum trans-
formation groupoids Gr (N, θ, θ̂, µ) and Gr (Nop

γ̂θ
, θ̂c, θc, µ◦).
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Examples:

Compact/discrete transformation groupoids (c.f. Vallin, Timmermann)

Quantum transformation groupoids arising from Fell bundles over discrete groups

Compact/discrete quantum groups (trivial Yetter-Drinfeld algebras)

Quantum transformation groupoids arising from quotient type coideals of compact
quantum groups (c.f. Enock-Timmermann)

Quantum transformation groupoids arising from quantum Bernoulli shift actions
of discrete quantum groups (Ongoing work based on a Timmermann’s idea)
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Thanks for your attention
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